
25

Why My Code Summarization Model Does Not Work: Code

Comment Improvement with Category Prediction

QIUYUAN CHEN, College of Computer Science and Technology, Zhejiang University

XIN XIA and HAN HU, Faculty of Information Technology, Monash University, Victoria, Australia

DAVID LO, School of Information Systems, Singapore Management University, Singapore

SHANPING LI, College of Computer Science and Technology, Zhejiang University

Code summarization aims at generating a code comment given a block of source code and it is normally

performed by training machine learning algorithms on existing code block-comment pairs. Code comments

in practice have different intentions. For example, some code comments might explain how the methods

work, while others explain why some methods are written. Previous works have shown that a relationship

exists between a code block and the category of a comment associated with it. In this article, we aim to

investigate to which extent we can exploit this relationship to improve code summarization performance. We

first classify comments into six intention categories and manually label 20,000 code-comment pairs. These

categories include “what,” “why,” “how-to-use,” “how-it-is-done,” “property,” and “others.” Based on this dataset,

we conduct an experiment to investigate the performance of different state-of-the-art code summarization

approaches on the categories. We find that the performance of different code summarization approaches

varies substantially across the categories. Moreover, the category for which a code summarization model

performs the best is different for the different models. In particular, no models perform the best for “why”

and “property” comments among the six categories. We design a composite approach to demonstrate that

comment category prediction can boost code summarization to reach better results. The approach leverages

classified code-category labeled data to train a classifier to infer categories. Then it selects the most suitable

models for inferred categories and outputs the composite results. Our composite approach outperforms other

approaches that do not consider comment categories and obtains a relative improvement of 8.57% and 16.34%

in terms of ROUGE-L and BLEU-4 score, respectively.
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1 INTRODUCTION

High-quality descriptive documentation, or code summary, is always essential for software devel-
opment and maintenance, because programmers spend 58% of their time on average on source
code comprehension [69]. Software documentation, especially code comments, plays a vital role
in helping developers to comprehend source code. However, documenting source code is a labour-
intensive task [10, 25], which increases the necessity of automatic or semi-automatic approaches.
Code summarization, which generates natural language descriptions of source code, can assist de-
velopers in capturing a high-level overview and helping developers to understand a piece of code
without having to read the whole source code. Summarizing code can be viewed as a documen-
tation extension [66], where a good code summary can not only help keep the consistency of the
code and comments in software maintenance [23] but also improve the performance of code search
using natural language queries [47, 71].

Most code summarization approaches are learning-based [2, 8, 9, 20, 22, 24, 63] or retrieval-
based [11, 44, 53, 68], which build models on a large dataset often consisting of method-level
source code snippets and the corresponding comments [3, 8, 20, 21, 63]. This way of model con-
struction assumes that a large enough dataset can enable models to work on divergent scenarios.
So they pursue a general representation of code-comment relation and use the same treatment for
different kinds of comments to perform code summarization. However, comments are complicated
in practice. On the one hand, a comment may pay attention to a particular aspect instead of a full
description of the code. On the other hand, a comment may describe not only the functionality but
also the rationale. For example, some comments explain a business logic instead of the code itself,
describing why a particular piece of code is written. However, to the best of our knowledge, there
is no investigation about the impact of different types of comments on code summarization.

To explore the impact of different categories of comments on the performance of code sum-
marization approaches, we conduct an empirical study on an open-source code summarization
dataset crawled from 9,714 projects [21]. We split the dataset into three datasets: the training data
is for training code summarization models, the validation data is for validating the impact of com-
ment classification on code summarization, and the testing data is for automatic evaluation of our
composite approach. We investigate the research questions (RQ) as follows.

First, we conduct manual comment classification on the validation data. There are several crite-
ria to categorize the code comments in the literature [49, 50, 72]. We follow a clear and rich code
comments taxonomy, which consists of six categories: “what” (description of the functionality),
“why” (why the code is provided or the design rationale of the code), “how-to-use” (description of
the usage), “how-it-is-done” (implementation details of the functionality), “property” (explain prop-
erties of the code) and “others” [72]. We manually label the validation data consisting of 20,000
code-comment pairs according to the proposed classification criterion. We follow the coding pro-
cedure [55] to guarantee the label quality. The labeling process is labour-intensive; every hour,
a participant could label 57 pairs on average. Fleiss Kappa value [13] is then used to measure
the agreement among the participants. The Fleiss Kappa value is 0.79, which indicates substan-
tial agreement among the participants. With such comment classification, we can conduct code
summarization experiments and explore the differences among the categories.
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RQ1 How do different comment categories impact the code summarization performance?

We then investigate six state-of-the-art summarization models on the derived categories, four in
the SE literature, and two in the Natural Language Processing (NLP) literature. For a fair compar-
ison, after checking the reproducibility using source code provided by the corresponding authors,
we train all the models on the same training data mentioned above. Then, we evaluate the results
in each category, separately. We find that there exists a significant difference between each cate-
gory. The preferences of each model to particular comment categories are different. In particular,
there is no model that performs the best for “why” and “property” comments. Besides, we observe
that no model dominates in all comment categories, which indicates that there is a potential to
combine the advantages of different models.
RQ2 How can we improve the code summarization performance using the comment cat-

egories? Our goal is to prove that by treating different categories of comments differently, we
can boost the code summarization performance. The insight is that since models have different
performance for different categories, we can combine their advantages of the models with the as-
sistance of inferred comment categories. For example, if the inferred category is “how-to-use,” we
select the model that performs the best for this category to generate comments. Hence, we need
a classifier to perform comment category prediction, which plays the role of selecting suitable
code summarization models. To this end, we build several classifiers based on our labeled dataset
(i.e., the validation data), including Random Forest, LightGBM, Decision Tree, Naive Bayes, and
a deep-neural-network-based classifier in which Random Forest obtains the best score of F1 score
in the 10-fold cross-validation. The classifier then selects the best model that should be used for a
particular kind of comment.

By categorizing the source code, we design a composite model for boosting code summarization
performance. We evaluate the effectiveness of our composite model on the testing data, which is
unlabeled and has no overlap with the validation data as well as the training data. Our composite
model outperforms other basic approaches that do not consider comment categories, and it obtains
a relative improvement of 8.57% in terms of ROUGE-L, which has been shown to correlate highly
with human assessments of summarized text quality [30] and a relative improvement 16.34% in
terms of BLEU-4 score, which is widely used for evaluating the quality of summaries. Considering
that the data distributions (e.g., the mean and the median of the code tokens and natural language
words) of the training data and the testing data are similar, we also apply our approach to an
external dataset, which is built on 1,500 high-quality Java projects [67] and has a different data
distribution. The results show that our model also outperforms the baselines in the external dataset.
In this way We demonstrate that comment category prediction could boost code summarization
to reach better results by combining it with current approaches.

To the best of our knowledge, this work is the first work that leverages comment category
prediction to boost source code summarization. In summary, our contributions are as follows:

• We classify code comments into six categories and conduct an experiment to perform six
code summarization approaches on them to explore the impact of comment categories on
code summarization.

• We design a composite model to improve the performance of code summarization models,
which demonstrate how comment category prediction can benefit code summarization task.

• Our research highlights that comment category prediction can make code summarization
practical in the real scenario of development.

The rest of the article is organized as follows: Section 2 describes our problem formulation and
dataset. Section 3 explores the impact of comment categories on code summarization. Section 4
describes our composite approach that utilizes the output of the comment category prediction
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Fig. 1. Overview of the approach.

task to improve code summarization performance. We discuss the implications and threats to
validity in Section 5. Section 6 introduces related work on code summarization. We present our
conclusions in Section 7.

2 SETUP

2.1 Approach Overview

Figure 1 shows an overview of the empirical study in RQ1 and our composite approach in RQ2. In
this work, we adopt datasets provided by Hu et al. [21] (the training data, the validation data, and
the testing data) and Wen et al. [67] (the external data, which has a different data distribution).

For RQ1, we manually classify validation data consisting of 20,000 code-comment pairs and label
categories for them using a procedure of open coding. Then, we train different code summarization
models on the training data and perform an empirical study to investigate the impact of different
categories on the code summarization performance.

For RQ2, leveraging the empirical study and the labeled data, we train a classifier to decide
the category for a snippet of the source code. The classifier works to perform comment category
prediction. Then, we train code summarization models on the same training data. According to
each model’s performance on the validation data (i.e., which model performs the best in a particular
category), our model chooses the corresponding model to summarize the source code. Here the
validation data not only plays the role of validating code summarization models but also plays the
role of tuning our composite model for comment category prediction tasks. Last, we evaluate our
composite model on the testing data and external data in which the composite model works by
combining the generated comments and outputs the final results.

2.2 Problem Formulation

Code summarization is a task that aims to summarize the functionality of the source code. We
formally describe the mapping as C �→ S , where C is the input source code, and S is the output
natural language summary.
Comment classification is a process of classifying code comments, which can help improve the
program understanding [49, 50, 72]. In this article, we refer to comment as a “summary” of source
code, which is a brief natural language description of that section of source code [42]. Comment
classification can be done manually or automatically [72].
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Table 1. Count of the Dataset

Dataset Pair # (%) Tokens of code Lines of code Words of NL

Train 445,812 (91.76%) 24,889,887 1,834,662 4,571,644
Validation 20,000 (4.12%) 1,112,533 82,207 204,357
Test 20,000 (4.12%) 1,103,447 81,573 205,476
Total 485,812 27,105,867 1,998,442 4,981,477

Comment category prediction leverages the results of the comment classification to build clas-
sifiers and predict the comment category given a piece of source code. It is a kind of source code
classification task that is studied in software engineering [7, 35, 60, 61], and it learns the relation-
ship between the source code and the comment category in the dataset to build the model.

The mechanism of code summarization is mining information of existing code-comment pairs
to generate comments generally. Current approaches are learning-based [2, 8, 9, 20, 22, 24, 63]
or retrieval-based [18, 53, 68]. However, they use the same treatment for comments of different
categories. Hence, how the code summarization models perform on different kinds of comments
is not explored in the literature.

2.3 Dataset Setup

We use a Java dataset provided by Hu et al. [21], which consists of 9,714 open source projects
in GitHub. The data consists of methods as well as their corresponding comments (i.e., pairs of
〈code, comment〉), which is extracted using JDT1, and the granularity is method-level. We keep the
way the original data is split; Hu et al. randomly selected 20,000 pairs as testing data and validation
data, respectively, and the remaining 445,812 pairs as training data (the three datasets do not come
from the same projects). Previous work shows that there are often duplicate methods in different
files of the same project [3], which may lead to the risk of leaking data from the training data to
the testing data (i.e., data leakage [26]). Therefore, the training data, validation data, and testing
data do not come from the same projects and have no overlap with each other.

In this article, as described in Figure 1, the purposes of the training data, validation data, testing
data, and the external data are as follows: the training data is used to train code summarization
models; the validation data is used to identify comments categories and validate the code summa-
rization models on these categories (described in Section 3); the testing data and external data are
used to evaluate our composite model on different data distributions (described in Section 4).

The basic characteristics of the dataset are as follows. We call the basic unit of preprocessed
source code as a token and call the basic unit of summary as a word. Table 1 describes the counts
of tokens of codes, the lines of codes, and words of the natural language of the three data.2 Fur-
thermore, we calculate the statistical numbers (i.e., minimum, first quarter, median, third quarter,
maximum, standard deviation, and mean) of the dataset. As described in Table 2, the statistical
results show that there are no significant differences among the datasets, which means the split-
ting guarantees the consistency of the distribution of each dataset. In addition, the comments are
precise as the median is only 10. The standard deviation of words of summaries is only 6.9, which
is much lower than the standard deviation of tokens of codes.

Considering that the data distributions of the training data and the testing data are similar,
we also build an external dataset with different data distribution to validate the performance of
our approach. The external dataset is based on 1,500 high-quality Java projects [67] that have no

1http://www.eclipse.org/jdt/.
2We count the numbers according to the dataset provided by the authors: https://github.com/xing-hu/EMSE-DeepCom.
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Table 2. The Statistical Description of the Dataset

Dataset Type Mean Std. Min. 1st Quart. Med. 3rd Quart. Max.

Train Code 55.83 53.07 5 18 36 75 665
NL 10.25 4.48 1 7 9 13 32

Validation Code 55.63 52.41 5 18 36 75 397
NL 10.22 4.46 1 7 9 13 30

Test Code 55.17 52.54 5 18 35 74 365
NL 10.27 4.49 2 7 9 13 29

Table 3. Count of the External Dataset

Dataset Pair number Tokens of code Lines of code Words of NL

Extra 20,000 1,204,665 95,355 167,409

Table 4. The Statistical Description of the External Dataset

Type Mean Std. Min. 1st Quart. Med. 3rd Quart. Max.

Code 60.49 92.94 9 16 31 69 1,937
NL 8.42 7.38 1 3 7 11 137

overlap with the aforementioned dataset of Hu et al. [19]. We use the same approach to extract
code-comment pairs, preprocess them, and randomly select 20,000 pairs that have the same number
with the testing dataset. The counts of the pairs, the tokens, the lines of code, and the words of
comments of the external dataset are shown in Table 3. The statistic of the external dataset is given
in Table 4. As the projects of the two datasets are different, we can see the data distributions of
the code and the comments (i.e., NL) of the external dataset are different from the training data,
validation data, and testing data in terms of statistical metrics (mean, standard deviation, etc.).

In this article, we perform a manual code comment classification to explore its impact on code
summarization, which outputs a labeled dataset of code comment categories. The results of the
classification are provided in Section 3.2.

3 IMPACT OF COMMENT CLASSIFICATION ON CODE SUMMARIZATION

3.1 Motivation

Code comments in practice are complicated. When documenting source code, developers would
pay attention to specific aspects of the code instead of describing it thoroughly. For example, some
comments describe the design rationale (i.e., why the code is written) or explain implementation
details (i.e., how functionality is implemented). Such variety leads to different kinds of comments.
However, current approaches are agnostic to different kinds of comments (i.e., they use the same
strategy to generate comments for different types of comments). Nowadays, the impact of different
kinds of comments (i.e., comment classification) on code summarization is unknown. Therefore,
our goal is to investigate such an impact of comment classification on code summarization and
explore how such techniques can benefit from comment classification.

3.2 Comment Classification

3.2.1 Categories of Code Comments. The complexity of the code comments is that differ-
ent developers describe different code entities from different perspectives [72]. Inspired by
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Table 5. Comment Categories with Descriptions and Examples

Category Description Example

What Gives a description of functionality of
the method.

“A helper function that process the
stack.”

Why Explains the reason why the method is
provided or the design rationale of the
method.

“Get a copy of the map (for
diagnostics).”

How-to-use Describes the usage or the expected
set-up of using the method.

“Should be called before the object
is used.”

How-it-is-done Describes the implementation details of
the method.

“Convert the byte[] to a secret key.”

Property Asserts properties of the method
including pre-conditions or
post-conditions of a method.

“Wait until seqno is greater than
or equal to the desired value or we
exceed the timeout.”

Others Unspecified or ambiguous comments. “The implementation is awesome.”

Zhai et al. [72], we classify comments into six categories: “what,” “why,” “how-it-is-done,” “prop-
erty,” “how-to-use,” and “others.” Table 5 shows the description and example of each comment
category: The “what” category gives a description of the method functionality (e.g., “a helper
function,” “a main-process function” ). The “why” category explains the reason why the method
is provided or the design rationale of the method (e.g., “get a copy of the map (for diagnostics)”).
The “how-to-use” category describes the usage, the expected set-up, or the environment of the
method (e.g., “should be called before the object is used”). The “how-it-is-done” category describes
the implementation details of the method (e.g., “convert the byte[] to a secret key”). The “property”
category asserts properties of the method including pre-conditions or post-conditions of the
method where pre-condtions indicate the prerequisite of the method while post-conditions
indicate the result of using the method [72]. For example, the comment “wait until seqno is greater
than or equal to the desired value or we exceed the timeout” explains the pre-condition (i.e., the
parameter “seqno”), which should satisfy the conditions (≥desired value) for the method to work
properly. The “others” category includes comments that do not fit any of the categories mentioned
above (e.g., “The implementation is awesome”).

There are many ways to categorize code comments from different perspectives. As our purpose
is exploring the impact of code comments on code summarization, this taxonomy of code com-
ments considers not only from the perspective of developer intentions (e.g., the category “why”)
but also considers the code properties (e.g., the category “property”) from the perspective of pro-
gram analysis [72]. In this article, we investigate several deep-learning-based code summarization
models. On the one hand, these models will regard the sequences of the code and natural language
words as inputs. This could help the models to learn the information about semantic and inten-
tion, which is related to the categories of “what” and “why.” On the other hand, some deep neural
networks would also consider syntactic information of the source code. For example, DeepCom
would serialize an abstract syntax tree (AST) of a method of code while Code2Seq would sample
paths of the AST and serialize them into a sequence. Then they input the serialized sequences
to the neural network to learn the syntactic information. This characteristic could help to capture
the code structure information, which is related to categories of “how-to-use,” “how-it-is-done,” and
“property.” Therefore, we choose this clear way of comment classification.

3.2.2 Procedure of Classifying Comments. In total, three programmers who are familiar with
Java participated in the open coding procedure (the first, the third authors of this article and a
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Table 6. Statistical of the Original Classification

Coder What Why How-to-use How-it-is-done Property Others

Coder 1 3,926 3,281 10,292 2,025 370 106
Coder 2 4,486 2,799 6,200 5,964 400 151
Coder 3 4,421 3,036 10,006 2,090 287 160

Table 7. Statistical of the Classification After Clarification

Coder What Why How-to-use How-it-is-done Property Others

Coder 1 4,117 3,381 10,001 2,025 370 106
Coder 2 4,486 2,799 9,200 2,964 400 151
Coder 3 4,457 3,500 9,106 2,490 287 160

grad student with two, three, and two years of experience in Java, respectively). We manually
classified the validation data, which consists of 20,000 〈code, comment〉 pairs (see Section 2.3 for
the description of the dataset splitting). Specifically, we used the open coding procedure [55] to
classify and label the data. Open coding is widely used to generate categories or label data in
Software Engineering [37, 54, 72]. There are three steps in our open coding procedure.
Step 1. Individual classification. The three coders read the data independently. For each pair,
each coder read the comment and the source code to decide the category according to the defi-
nitions. Finally, the three coders classified 20,000 pairs of data. Table 6 shows the statistics of the
results of the original classification.
Step 2. Discuss and merge conflicts. After Step 1 (individual classification), the three coders
worked together to make the final agreement. We merged conflicts by clarifying the scope bound-
aries among categories and clarifying the misunderstanding. For example, as shown in Table 6, the
categories “how-to-use” and “how-it-is-done” produced most of the conflicts. The coders discussed
these two kinds of comments, and they finally reached a consensus on the scope boundary of the
two categories “how-to-use” and “how-it-is-done.” For example, all the comments describing specific
functional purposes like “checks if the variable is built-in” were classified into the category “how-
to-use.” By clarifying the scope boundary of all the categories, we reduced the number of conflicts
as shown in Table 7. In addition to clarifying the scope boundaries of categories, the coders also
merged the conflicts by clarifying the misunderstanding in the discussions. If there is no ultimate
consensus after discussion, then we follow the majority voting. The coders participated in all the
discussions and discussed all the conflicts. Each discussion lasted about 30 min.
Step 3. Iterate and revisit. In Step 1 (merging conflicts) and Step 2 (handling issues), after clar-
ifying scope boundaries among categories or clarifying the misunderstanding, the three coders
iterated the steps again and revisited the corresponding comments to determine the final category.
In this way, we guaranteed that all the pairs of data are classified on the same criterion by three
coders. We revisited once after several discussions and handled the conflicts. In total, we revisited
the whole dataset two times following the procedure mentioned above and solved the conflicts.
The process ended when we could not identify any new conflicts or issues. We encountered no
situation in which the three coders insisted on three different labels so that majority voting could
lead to the final results. Table 8 demonstrates the results after revisiting, and Table 9 shows the
final results.

The labeling process is labour-intensive; one coder could label 57 code-comment pairs in an
hour on average (reading source code, comment and determining category). We developed a tool
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Table 8. Statistical of the Final Classification of Three Programmers

Coder What Why How-to-use How-it-is-done Property Others

Coder 1 4,164 2,434 10,164 2,883 273 82
Coder 2 4,344 2,349 10,088 2,862 279 78
Coder 3 4,260 2,380 10,276 2,726 282 76

Table 9. Counts of Different Categories in the Validation Data

Category Count Proportion

What 4,106 20.53%
Why 2,493 12.47%
How-to-use 10,190 50.95%
How-it-is-done 2,828 14.14%
Property 291 1.45%
Others 92 0.46%

to monitor the amount of time it took for this task; only when the coder is reading and labeling,
the time can be counted. The time of discussing, merging conflicts, and revisiting is not included.

Last, we use the Fleiss Kappa value [13] to measure the agreement among the three coders.
We calculate the Fleiss Kappa on the results of the final round. Fleiss Kappa values in range of
[0.01, 0.20], (0.20, 0.40], (0.40, 0.60], (0.60, 0.80] and (0.80, 1] correspond to slight, fair, moderate,
substantial, and almost perfect agreement, respectively. The overall Kappa value is 0.79, which
indicates substantial agreement among the participants.

The final results of the manual classification are in Table 9. The distribution shows that the
“how-to-use” comments correspond to almost half of the comments. The “why” comments take
more than 10% of the comments and the “property” comments take only a small part.

3.3 Experiment Setup

In this article, we evaluate six models on different categories of comments. To keep the variable
that all models on one same dataset, we exclude approaches that do not support Java. All the
models are trained on the same training data and they are applied to each category, separately. In
our experiments, CodeNN [24], DeepCom [21], and Code2Seq [3] are code summarization models.
NNGen [33] is an intuitive and robust retrieval-based model. Two-layer bi-directional encoder-
decoder Long Short-Term Memory (LSTM) (two-layer BiLSTM) [36] and Transformer [62] and are
baselines. Our criterion for choosing the approaches is based on whether they are the state-of-the-
art (e.g., DeepCom), they are classic code summarization models (e.g., CodeNN is the first to apply
a neural network to code summarization), or they are based on a popular NMT framework (e.g.,
Transformer). The description and implementation details of the models are as follows.

Early research only uses lexical-level representations [2, 24]. In other words, they only treat
source code as the sequence of tokens like in NLP.
CodeNN. CodeNN is the first to use neural networks in this area. It exploits an RNN with attention
and directly distributed the comments’ words to code tokens. We use the source code of CodeNN
and adopt their preprocessing procedures.

Recent state-of-the-art research combines lexical-level and syntactic-level representations. Be-
cause the implementations of different levels of source code are different (especially the way to
convert AST to sequence), we choose two models, Code2Seq [3] and DeepCom [21], which utilize
both source code tokens and ASTs.
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Code2Seq. We run Code2Seq using the source code provided by the authors. Code2Seq converts
AST to sequence by sampling the path inside the tree structure [3]. In particular, the Code2Seq
model aims to conduct “extreme code summarization,” which is generating a method name instead
of a sentence of natural language (i.e., summary). With the assistance of the authors, we modify
the corresponding part of the model and replace the method name with the summary.
DeepCom. We use the source code of DeepCom provided by authors to run experiments. Deep-
Com converts AST to sequence by traversing the AST in a particular traversing algorithm [21].
In preprocessing, we use the same source code to follow the procedure of tokenization as well as
parsing, extracting, and traversing ASTs with the same algorithm.
NNGen. NNGen is an information-retrieval-based method for generating commit messages for
new diffs, which is also a mapping from code information to natural language similar to code
summarization [32]. NNGen works in the same way with CloCom [68] and it has an intuitive
implementation. NNGen uses the nearest neighbour algorithm to reuse proper existing comments
according to the code.
NMT Baselines. Two baselines: Transformer and BiLSTM are proven to be strong baselines in
generative tasks in NLP and software engineering, which read the input source code as a stream of
tokens. Two-layer bi-directional encoder-decoder LSTMs with global attention [36] is classic neu-
ral networks and Transformer [62], which achieved state-of-the-art results for translation tasks.
Hyperparameter setting. As described above, we use the source code provided by authors and
keep the original hyperparameters (e.g., model structures and training strategies) to reproduce ex-
periments. Specifically, for CodeNN, DeepCom, and NNGen, we follow the original preprocessing
methods and the original experimental settings. For Code2Seq, we use a modified preprocessing
method with the assistance of authors to perform code summarization task and follow the original
experimental settings. For the NMT baselines, we follow the default experimental settings of the
OpenNMT.

Our computing devices are 4 Nvidia 2080ti GPU (48 G memory in total) and Intel Xeon Gold 6226
CPU with 12 cores. For all approaches, we use the same training data to build the models with a sim-
ilar early stopping strategy. We use the trained models to evaluate different categories, separately.

3.4 Evaluation Metric

We use NMT metrics of BLEU (1 through 4) [48] and ROUGE [30] to evaluate the model, which are
widely used in translation and code summarization tasks [22, 24, 62, 63]. We introduce the metrics
as follows.
BLEU, the abbreviation for BiLingual Evaluation Understudy [48], is widely used for evaluating
the quality of summaries in Software Engineers [22, 24, 62, 63]. It is a variant of precision metric,
which calculates the similarity by computing the n-gram precision of a candidate sentence to the
reference sentence, with a penalty for the overly short length [48]. It is computed as

BLEU = BP ∗ exp �
�

N∑
n=1

wnloдpn
�
�
, (1)

whereN = 1, 2, 3, 4 andwn =
1
N

. BP represents the brevity penalty, which penalize short sentences
as

BP =

{
1, if cand > ref,

e1− r
c , if cand ≤ ref,

(2)

where cand and ref represent the lengths of candidate sentences and reference sentences, respec-
tively. In particular, we often pay attention to BLEU-4 as it can reflect the weighted results from 1
through 4.
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ROUGE, the abbreviation for Recall-oriented Understudy for Gisting Evaluation [30], is widely
used to evaluate summarization tasks [34, 63]. The precision, recall, and F1 score of ROUGE are
calculated as follows:

R =

∑
(cand,ref)∈S

∑
дr amn ∈refCountcand (дramn )∑

(cand,ref)∈S
∑

дr amn ∈candCountr ef (дramn )
, (3)

P =

∑
(cand,ref)∈S

∑
дr amn ∈refCountcand (дramn )∑

(cand,ref)∈S
∑

дr amn ∈candCountcand (дramn )
, (4)

F1 =
2R ∗ P
R + P

, (5)

where cand, ref, and S refer to a generated candidate comment, its reference description and the
test set.дramn is a n-gram phrase, andCountcand (дramn ) andCountr ef (дramnn ) refer to the count
number of дramn in cand and ref, respectively. In particular,∑

дr amn ∈cand

Countcand (дramn ) (6)

refers to the matched n-gram phrases in both ref and cand. Intuitively, Rrouдe−n measures the
percentage of the n-grams in the reference sentence that a candidate sentence can match, Prouдe−n

represents the percentage of “correct” n-grams (i.e., matched n-gram in reference sentence) in a
candidate sentence. F1rouдe−n is a harmonic mean of both precision and recall. The precision,
recall, and F1 score of ROUGE-L are calculated in the same way, but they use the longest common
subsequences between candidate and reference sentences [30]. We report F1 scores of ROUGE,
which balance precision and recall.

We calculated all of the NMT metrics for code summarization by the package provided by
Sharma et al. [56].

3.5 Results and Analysis

RQ1 How do different comment categories impact the code summarization performance?

The results of the experiments are in Table 10. To the best of our knowledge, our selected ap-
proaches are classic (CodeNN is the first to apply deep-learning generation technique to code
summarization) or the state-of-the-art (e.g., DeepCom). The state-of-the-art performance in terms
of ROUGE and BLEU is about 30%, which is achieved by the experiments that we have reproduced
in this article. Our observations are as follows:

For each code summarization approach, there is a significant performance difference

across the categories. The up arrow (↗) in the table indicates that in this category, the model
statistically significantly outperforms the other models. We use compare-mt [46], a tool for com-
parison of language generation tasks, to perform statistical significance tests in terms of ROUGE
and BLEU. Therefore, such differences suggest that comment classification (i.e., treat comments
differently) can potentially influence code summarization performance.

Different code summarization approaches perform the best for different categories.

The results show that DeepCom, CodeNN, and NNGen perform the best for “what” comments,
Code2Seq performs the best for “how-to-use” comments, Transformer and two-layer BiLSTM per-
form the best for “how-it-is-done” comments. No models perform the best for “why” and “property”
comments among the six categories.

A possible explanation of such differences is that code is always highly-structured. For example,
the “how-it-is-done” comments of the process often correspond with the source code. They do not
involve knowledge above method granularity so that the model builds a relatively tight relation-
ship between source code and natural language. Code2Seq and DeepCom represent code at the
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Table 10. Performances of the Code Summarization Models in Each Comments Category

ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Approach Category (%) (%) (%) (%) (%)

CodeNN What 14.36% 13.64% 3.68% 1.54% 0.90%
Why 6.52% 6.37% 1.31% 0.42% 0.19%
How-to-use 8.62% 8.98% 2.23% 1.01% 0.63%
How-it-is-done 9.21% 8.08% 2.38% 0.91% 0.45%
Property 13.34% 13.17% 4.13% 1.69% 0.00%
Others 7.01% 7.26% 1.66% 0.00% 0.00%
All 9.72% 9.33% 2.44% 1.01% 0.58%

Code2Seq What 30.31% 31.66% 21.68% 17.23% 14.70%
Why 26.71% 24.28% 15.70% 11.83% 9.91%
How-to-use↗ 34.30% 36.76% 26.79% 21.85% 19.14%
How-it-is-done 30.78% 30.14% 21.12% 16.98% 14.80%
Property 29.71% 33.36% 23.91% 19.46% 17.22%
Others 25.36% 25.48% 17.28% 14.28% 12.82%
All 31.60% 32.25% 22.76% 18.26% 15.84%

DeepCom What↗ 36.59% 34.51% 28.26% 24.30% 21.44%
Why 27.48% 26.47% 20.60% 18.13% 16.89%
How-to-use 33.28% 33.83% 26.73% 23.42% 21.58%
How-it-is-done↗ 33.99% 32.51% 26.61% 23.99% 22.63%
Property↗ 30.89% 31.66% 25.46% 22.07% 19.89%
Others 27.38% 29.09% 22.79% 20.22% 18.62%
All 33.10% 32.42% 25.94% 22.81% 21.01%

NNGen What 35.55% 34.87% 26.26% 23.06% 21.33%
Why↗ 29.65% 28.33% 22.09% 20.34% 19.79%
How-to-use 32.52% 33.16% 25.46% 21.10% 18.83%
How-it-is-done 33.39% 32.25% 27.34% 22.42% 21.53%
Property 30.49% 28.39% 21.29% 18.50% 16.68%
Others↗ 32.45% 32.45% 25.93% 23.49% 21.37%
All 34.04% 33.75% 24.98% 21.87% 21.07%

Transformer What 19.06% 11.81% 7.21% 5.27% 4.23%
Why 20.36% 14.31% 8.84% 6.70% 5.53%
How-to-use 20.59% 13.03% 8.22% 6.24% 5.13%
How-it-is-done 23.14% 15.86% 10.56% 8.26% 6.98%
Property 18.55% 11.70% 6.84% 4.87% 3.91%
Others 18.50% 11.96% 7.84% 5.84% 4.84%
All 20.61% 13.42% 8.48% 6.43% 5.30%

2-Layer

BiLSTM

What 15.99% 9.75% 4.91% 2.96% 1.99%
Why 17.27% 12.13% 6.37% 4.02% 2.87%
How-to-use 18.44% 11.60% 6.40% 4.23% 3.09%
How-it-is-done 18.85% 12.91% 7.22% 4.81% 3.60%
Property 15.13% 9.28% 4.47% 2.46% 1.60%
Others 13.10% 8.44% 4.19% 2.18% 1.28%
All 17.58% 11.33% 6.11% 3.95% 2.86%
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syntactic level (i.e., utilize AST), which is a better use of the structural features of source code
while NLP techniques do not consider code structure information. How AST is used in DeepCom
and Code2Seq are different: Code2Seq utilizing AST by sampling the paths in AST while DeepCom
converts the whole AST into sequences. This mechanism differences lead to different preferences.
In addition, a possible explanation of the performance of “property” comments is that “property”
comments aim to describe part of the source code like particular parameters or variables. Code
summarization trains the model to maximizes the possibility of the next word based on the prior
condition (e.g., the preceding word). However, the decision of which part is valuable to comment
involves a more complicated process, which is more like sorting and recommending problems.
Hence the results in this category are not ideal.

Utilizing code information is essential, but not enough for all kinds of comments. In
particular, all models have a poor performance in the “why” category. The “why” comments often
involve complicated business logic or background knowledge. As the granularity is method level,
this kind of knowledge is beyond the source code. Why the code is designed (i.e., design rationale)
is often beyond implementation details of the code. Therefore, the model cannot reach excellent
performance in this category. In our experiments, NNGen, a retrieval-based model, has a relatively
better performance than others, which indicates that for “why” comments, external information
beyond the target code itself (i.e., other similar methods and their comments) also plays a critical
role. For example, NNGen retrieves a comment “This needs to be called before anything else, because
we need the media factory.” It explains the design rationale (i.e., factory pattern in Java), which is
hard to be inferred from the source code.

Summary

We classify comments into six categories and conduct an experiment on each category,
separately. We find that for each code summarization approach, there is a significant per-
formance difference across the categories.Different code summarization approaches perform
the best for different categories. In particular, no models perform the best for “why” and
“property” comments among the six categories.

4 COMPOSING COMMENT CLASSIFICATION INTO CODE SUMMARIZATION

4.1 Motivation and Insight

RQ2 How can we improve the code summarization performance using the comment cat-

egories? As described in Table 10, we find that different code summarization methods perform
best for different categories, which means that the ability of the models to extract information
from source code is different. Such differences come from the mechanism or implementation of
different models. Therefore, it could be beneficial to combine the advantages of models that per-
form best in different comment categories. Our goal is to demonstrate that comment classification
could boost code summarization to reach better results.

Insight. According to our previous findings, for each category, there exists an approach that per-
forms the best. Besides, there is no one model that dominates over all the categories, which means
we can design a composite approach to take advantage of different approaches. Specifically, ac-
cording to our experiments, Code2Seq works the best for “how-to-use” comments; DeepCom works
the best for “what,” “how-it-is-done,” and “property” comments; NNGen works the best for “why”
and “others” comments. We can cover all the categories by using the most suitable approach to
perform code summarization on each category. In this sense, we combine different code summa-
rization models, and we call it a composite approach. Such a composite approach can outperform
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baselines in the validation dataset. However, it cannot prove that such a composite approach can
boost the results only on the validation dataset, because the obtained prior knowledge of which
approach performs the best on a particular category may not work in a new dataset. Therefore,
the composite approach should be evaluated on a new dataset (i.e., testing dataset) on which we
do not know such prior knowledge.

However, if applied to a new dataset, then the composite approach is agnostic to the category of
a new snippet of the source code. Since we have manually labeled 20,000 code-comment pairs, the
labeled dataset constructs a relationship between the source code and the comment category. We
can leverage such a dataset to build the classifier. The task can be regarded as a kind of source code
classification task, which is studied in software engineering [7, 35, 60, 61]. A prior study shows that
source code corpora have similar statistical properties to natural language corpora [1], indicating
the consistency between the source code and comment. Besides, Louis et al. use the source code
and the corresponding labels to train a classifier and predict whether a developer would write
comments given a piece of code [35]; Chen et al. succeed in using code classification to boost code
summarization [7]. These studies show it is feasible to predict category with the assistance of our
labeled dataset. We call this task “code comment category prediction.”

Note that the task is not the end goal of our composite approach. The classifier plays the role
of the selector, which selects suitable code summarization models according to the categories and
combines the results. Considering that a snippet of code may have different functionality in dif-
ferent programs, which may influence our findings, we count the duplicated source code in the
dataset. There is only 1.66% duplicated source code, and only 0.23% are the cases that have the
same source code with different comments. In this way, we can utilize the results of the comment
classification and compose it into the code summarization.

4.2 Comment Category Prediction by Source Code

4.2.1 Comment Category Prediction. This task leverages the results of the comment classifica-
tion to build classifiers and predict the comment category given a piece of source code. In Section 3,
we manually classify and label the validation data consisting of 20,000 code-comment pairs. Lever-
aging these labeled data, we build classifiers to conduct automatic classification. We train several
classifiers leveraging source code (split tokens), and the corresponding labels. After building clas-
sifiers, we evaluate each classifier by 10-fold stratified cross-validation and compare it with each
other. 10-fold cross-validation splits the dataset into ten consecutive folds (i.e., 2,000 pairs in each
fold); each fold is then used once for evaluation while the nine remaining folds form the training
set (i.e., 18,000 pairs).

After evaluating classifiers, the whole labeled dataset is used for training a classifier. Then, we
apply the classifier to the testing data to get the categories for each code snippet.

4.2.2 Experimental Settings. In this article, we investigate five techniques,3 i.e., Random For-
est [5], LightGBM [27], Decision Tree [6], multinomial Naive Bayes [38], and a deep-neural-
network-based classifier. These techniques are proven to be effective in comment classification
in software engineering [49, 50, 72].

For Random Forest, LightGBM, Decision Tree, and multinomial naive Bayes, we consider not
only text features of the source code but also syntactic features of the source code. For text
features, after tokenization of the source code, we extract bigram term-frequency of the tokens,
which could extract tens of text features for one snippet of the source code. Such a technique is

3We implement Random Forest, Decision Tree, and multinomial Naive Bayes using sci-kit learn toolkit [51]. We implement

LightGBM using the official library [27]. We implement the deep-neural-network classifier using pytorch https://pytorch.

org/.
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a conventional feature extraction approach for the source code that is widely used in the in the
software engineering literature [31, 60, 61]. For syntactic features, we extract lines of code (LOC),
token numbers, and variable numbers of the source code as statistical features; we extract method
name and method parameters of the source code as identifier features. These features are also
used in prior software engineering literature [12, 15, 60].

We construct an LSTM (Bi-directional) network model for classification, which is used for source
code classification [35]. We numericalize the token sequences of the source code (i.e., map the
token sequences to numerical indexes). Then, we use an embedding layer to embed each token
and concatenate them as the input sequence of the model. For each sequence, the BiLSTM network
accepts the embeddings of the tokens and inputs them into a layer with two concatenated LSTM
(i.e., Bi-directional LSTM). The layer utilizes the last state of the time sequences of such layers.
Then the model inputs the tensors to a fully-connected layer and goes through a softmax layer to
get the output labels.

We train the models with 50 epochs and the model randomly selects 5% data for in-training-
validation. We adopt an early stopping strategy that if the in-training-validation stops increasing
for three epochs, the model will stop training.

4.2.3 Metrics for Evaluating Classifiers. To evaluate the effectiveness of our automatic tech-
nique to classification code comments, we use well-known Information-retrieval metrics for the
quality of results, called Precision, Recall, and F1 score:

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 = 2 × Precision · Recall
Precision + Recall

, (9)

where True Positive (TP) represents the number of the comments that are correctly classified to the
according category; False Positive (FP) represents the number of the comments that are wrongly
classified to this category; False Negative (FN) represents the number of the comments that are
wrongly classified into other categories. Here the Precision, Recall, and F1 score are for certain
categories. We evaluate the classifier using the weighted results (i.e., calculate metrics for each
category, and find their weighted average by the number of each category).
Evaluation of multiple classification tasks. In this article, the classification task is a multi-
class classification as there are six categories (i.e., “what,” “why,” “how-to-use,” “how-it-is-done,”
“property,” and “others” ). Considering the supports (i.e., the numbers of different categories) are
different, we calculate the weighted results of precision, recall, and F1 scores. Formally, we calculate
them as

Precisionweiдhted =

n∑
i=1

Precisionci

Nci

, (10)

Recallweiдhted =

n∑
i=1

Recallci

Nci

, (11)

F1weiдhted =

n∑
i=1

F1ci

Nci

, (12)

where ci denotes the ith category, Nci
denotes the number of the ith category, n denotes the cat-

egory numbers where n = 6 representing the six categories, and Precisionci
, Recallci

, and F1ci
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denotes the Precision, Recall , and F1 scores of the ith category, separately. In this article, we
use cross-validation to evaluate the classifiers and report the average results of Precisionweiдhted ,
Recallweiдhted , and F1weiдhted of all folds.

We report the standard deviation s of the experiments. There are two kinds of standard devia-
tions. For the cross-validation, we report the standard deviation of all the folds:

s =

√√√
1

Nf − 1

Nf∑
i=1

(xi − x )2, (13)

where Nf denotes the number of folds, x denotes one of Precisionweiдhted , Recallweiдhted , or
F1weiдhted scores. xi denotes the results of the ith fold, and x denotes the average score of all
folds.

For the evaluation of our approach and the baselines, considering the randomness in the
learning-based approaches, we run the experiments ten times and report the standard deviation:

s =

√√√
1

Ne − 1

Ne∑
i=1

(xi − x )2, (14)

where Ne denotes the number of experiments, x denotes one of ROUGE or BLEU scores. xi denotes
the results of the ith time of the experiment, and x denotes the average scores of all experiments.

4.3 Composite Approach with Comment Category Prediction

According to the results in Table 10, the up arrow (↗) in the table indicates that the model out-
performs the others in this category. Based on our observations and insights mentioned above,
we choose Code2Seq, DeepCom, and NNGen as basic models. For example, Code2Seq has the best
performance in “how-to-use” comments, so when the classifier determines the “how-to-use” cat-
egory given the source code, we use Code2Seq to conduct code summarization. The composite
approach is proposed in the same way. Then the approach combines all the generated comments
and outputs the ultimate results.

However, note that we cannot evaluate the approach in the same validation data, which is
used for validating code summarization models, because we have obtained the prior knowledge of
“which models perform best in a particular category” in this validation data. Recall that the testing
data is unlabeled and has no overlap with the validation data and training data (cf. Section 2.3).
We evaluate our composite approach in the testing data. Last, we calculate the evaluation metric
according to the generated comments and reference comments.

The three approaches without the assistance of the classifier are regarded as baselines. We eval-
uate each model on the same testing data and get the output, separately.

4.4 Experimental Results

Table 11 shows the results of the classifiers. In several candidates, the best classifier is Random
Forest, which achieves 76.91% in 10-fold cross-validation. It outperforms other classifiers and is
used to be a selector in our composite approach. To the best of our knowledge, there are no other
approaches perform comment category prediction by source code. The subsequent experimental
results in Table 13 show that Random Forest is useful in classifying the comments automatically.

Table 12 shows the results of the six categories of different classifiers (mean ± standard
deviation). We can observe that generally, all classifiers perform the best for categories of “what”
and “how-to-use.” The performance of “property” and “others” is relatively low, and their standard
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Table 11. The Weighted Precision, Recall, and F1 Scores of Classifiers

Classifier Precision Recall F1

Random Forest 78.49% ± 0.64% 78.04% ± 0.52% 76.91% ± 0.56%
LigthGBM 74.14% ± 1.16% 74.53% ± 1.17% 74.19% ± 1.12%
Decision Tree 73.45% ± 0.84% 73.78% ± 0.84% 72.40% ± 0.88%
Naïve Bayes 69.67% ± 1.22% 57.31% ± 0.39% 46.73% ± 0.61%
BiLSTM 73.81% ± 1.15% 74.19% ± 0.99% 73.37% ± 1.01%

deviations are very high, because the numbers of pairs belonging to the two categories are
relatively small, which affects the stability of the results.

Table 13 shows the results of our composite approach on the testing data. Because of the differ-
ences of the testing data and validation data, the performances of the three baselines are slightly
different in which Code2Seq performs better in the testing data while DeepCom performs better in
the validation data. NNGen has relatively higher BLEU-3 and BLEU-4, because as a retrieval-based
approach, the results are more prone to match exactly once the sentences are retrieved.

Our composite approach outperforms current approaches in the testing data. Specifically, the
approach has a relative improvement of 8.57% (2.76 absolute improvements) in ROUGE-L and a
relative improvement of 16.34% (2.80 absolute improvement) in BLEU-4 score. We use compare-
mt [46], a tool for comparison of language generation tasks, to perform statistical significance
tests in terms of ROUGE and BLEU. The results show that the difference between our approach
and the baselines is significant. Moreover, our improvement is more than the improvement of
Code2Seq over DeepCom in terms of ROUGE and NNGen over Code2Seq in terms of BLEU-4. It
indicates that the classifiers succeed in incorporating classification information. Our experiments
demonstrate that comment classification can boost code summarization to reach better results.
Influence of the classifiers. Though we use the Random Forest as the final selector, we report
the results of our composite approach with different classifiers. As in Table 14, the results of apply-
ing the LightGBM, Decision Tree, Naive Bayes, and the DNN-based classifiers are lower than the
results of applying Random Forest. In terms of ROUGE-L, our composite approach with all classi-
fiers outperforms the baselines and in terms of BLEU-4, our approach with classifiers of Random
Forest, LightGBM, and BiLSTM outperforms the baselines. We can observe that the performance
of the classifiers in terms of F1 scores are approximately positively related to the results of the com-
posite approach (i.e., approximately, the higher the F1 score is, the better our approach is, except
for the LightGBM and BiLSTM). If we could have a clear understanding of intention categories of
comment for the source code, then code summarization would have a better performance.
Performance on the external dataset with different data distribution. Table 15 shows the
results of our composite approach and baselines on the external data. Because the data distribu-
tions of the external data are different, the models have relatively lower scores. Still, our model
outperforms the baselines in such an external dataset with different data distributions from the
training data and testing data.

4.5 Qualitative Analysis

Only reporting ROUGE and BLEU scores does not give an intuition of the impact of categories,
and it leaves an open question of how our approach works. We use two examples for illustrative
purposes. While we are hesitant to overinterpret the selected examples, we observe that these are
consistent with many others. The first example is to show the impact of categories. We choose
DeepCom and select referenced and generated comments to illustrate different performance in
categories of “what,” “why,” “how-to-use,” “how-it-is-done,” and “property” as in Figure 2 (the five
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Table 12. The Precision, Recall, F1 Scores of the Six Categories of the Classifiers

Classifier Category Precision Recall F1

Random Forest What 80.2% ± 1.83% 78.70% ± 1.64% 81.81% ± 1.29%
Why 72.13% ± 2.13% 69.28% ± 1.33% 75.14% ± 1.30%
How-to-use 78.04% ± 0.87% 92.73% ± 0.90% 84.75% ± 0.50%
How-it-is-done 80.13% ± 2.56% 51.92% ± 2.40% 62.96% ± 1.90%
Property 71.7% ± 12.28% 43.81% ± 8.06% 56.71% ± 8.82%
Others 68.33% ± 31.13% 21.53% ± 10.42% 31.30% ± 13.59%

LightGBM What 80.01% ± 1.45% 74.21% ± 1.70% 77.00% ± 1.48%
Why 75.64% ± 2.24% 67.22% ± 3.97% 71.15% ± 3.06%
How-to-use 76.56% ± 0.96% 90.06% ± 0.71% 82.76% ± 0.80%
How-it-is-done 70.91% ± 2.91% 46.56% ± 3.55% 56.13% ± 2.94%
Property 84.90% ± 10.78% 34.34% ± 7.23% 48.32% ± 7.80%
Others 64.52% ± 31.87% 29.28% ± 11.23% 29.28% ± 11.23%

Decision Tree What 77.70% ± 1.89% 76.91% ± 2.29% 77.28% ± 1.49%
Why 70.63% ± 3.22% 71.73% ± 1.84% 71.15% ± 2.28%
How-to-use 80.31% ± 0.89% 81.52% ± 1.24% 80.91% ± 0.89%
How-it-is-done 60.06% ± 3.17% 58.98% ± 3.56% 59.46% ± 2.90%
Property 63.72% ± 4.89% 46.73% ± 8.16% 53.60% ± 6.22%
Others 50.14% ± 31.47% 29.02% ± 20.34% 35.20% ± 22.26%

Naïve Bayes What 78.29% ± 1.67% 26.33% ± 2.06% 40.51% ± 2.65%
Why 61.42% ± 6.10% 37.28% ± 1.34% 33.46% ± 2.31%
How-to-use 68.07% ± 0.28% 81.82% ± 0.18% 55.24% ± 0.24%
How-it-is-done 72.39% ± 6.93% 34.01% ± 0.80% 37.67% ± 1.47%
Property 53.22% ± 0.69% 38.76% ± 7.27% 39.62% ± 7.97%
Others 54.33% ± 27.72% 42.65% ± 13.23% 41.25% ± 23.33%

BiLSTM What 76.57% ± 2.42% 69.43% ± 1.92% 72.80% ± 1.55%
Why 75.31% ± 2.28% 64.90% ± 1.71% 69.68% ± 1.15%
How-to-use 75.17% ± 0.92% 86.90% ± 1.00% 80.61% ± 0.80%
How-it-is-done 64.08% ± 3.05% 49.65% ± 1.81% 55.92% ± 1.93%
Property 76.36% ± 16.15% 35.05% ± 5.89% 47.69% ± 7.65%
Others 50.00% ± 44.72% 8.67% ± 7.98% 14.23% ± 12.51%

Table 13. Experimental Results of the Composite Approach and Baselines on the Testing Data

Approach ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

DeepCom 32.16% ± 1.77% 31.91% ± 2.77% 20.79% ± 1.84% 17.35% ± 0.17% 16.44% ± 0.10%

Code2Seq 32.22% ± 0.89% 30.99% ± 0.10% 24.11% ± 0.23% 17.76% ± 0.51% 16.07% ± 0.86%

NNgen 30.57% 29.72% 24.56% 20.32% 17.14%

Ours 34.98% ± 2.09% 32.66% ± 2.41% 25.76% ± 0.12% 21.58% ± 0.17% 19.94% ± 0.22%

NNGen is a retrieval-based approach so there is no standard deviation.

cases are from the top to bottom, respectively). In the first case, the approach identifies the role
of the method, but it fails to summarize it is a “helper” function. The technical reason is that the
word “helper” lacks context, which leads to a low probability of the model to generate the word
“helper.” The second case aims to describe an intention using the word “reachability.” But the
approach fails to summarize it, because the word is rare and lacks context. Instead, it summarizes
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Table 14. The Results of the Composite Approach with Different Classifiers

Classifier ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Random Forest 34.98% ± 2.09% 32.66% ± 2.41% 25.76% ± 0.12% 21.58% ± 0.17% 19.94% ± 0.22%

LigthGBM 32.93% ± 1.88% 32.59% ± 0.78% 22.89% ± 2.25% 18.63% ± 1.57% 16.12% ± 0.21%

Decision Tree 32.75% ± 2.22% 31.87% ± 2.61% 22.58% ± 0.37% 18.22% ± 1.40% 15.77% ± 0.34%

Naïve Bayes 32.60% ± 1.99% 31.68% ± 2.55% 22.37% ± 0.11% 18.43% ± 0.86% 14.83% ± 0.47%

BiLSTM 33.20% ± 0.10% 32.24% ± 2.19% 23.45% ± 1.33% 19.92% ± 0.12% 17.99% ± 0.17%

Table 15. Experimental Results on the External Dataset with Different Data Distribution

Approach ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

DeepCom 26.73% ± 1.57% 25.12% ± 2.17% 19.57% ± 1.21% 16.57% ± 0.32% 15.63% ± 0.24%

Code2Seq 27.46% ± 0.94% 27.43% ± 0.21% 23.29% ± 0.19% 16.63% ± 0.52% 15.96% ± 0.66%

NNGen 27.29% 27.18% 22.97% 19.55% 16.48%

Ours 29.75% ± 1.64% 29.12% ± 1.65% 24.74% ± 0.74% 20.46% ± 0.21% 18.34% ± 0.34%

the functionality as the input is solely the source code. The third case emphasizes the change of the
variable and the approach is successful to summarize “how-to-use” even though the performance
is not high in terms of NMT metrics, which evaluates verbatim results. The fourth case comments
how the method deletes the video, and the approach succeeds in capturing the key information
(i.e., id). The fifth case explains the arguments of the method, while the approach only catches the
type of the variable (i.e., array of the byte). As mentioned in Section 3.3, DeepCom inputs the AST
sequence and token sequence of source code, and many current approaches follow this framework.
On the one hand, the example shows a limitation of such a framework that current input is not
sufficient for summarizing external information outside the source code (e.g., the first case cannot
summarize information “helper” and the second case cannot summarize the intention). On the
other hand, the example illustrates how the approach is more intended to retrieve the information
to summarize the functionality with only source code.

The second example is to show how our composite works and show its procedure by observing
the AST structures. As in Figure 3, the source code is first categorized to “why” comment, because
our classifier catches a similar code pattern in the labeled validation data. After deciding the cate-
gory, recall that the NNGen works best in the “why” category, the composite model uses NNGen
to generate comments. To compare with models that are not selected, we also call DeepCom and
Code2Seq to generate comments. According to human evaluation, DeepCom successes to describe
the functionality but in a complicated way. As shown in Figure 3, it captures the underlined key-
words and outputs them in a readable way. However, the way it describes is complicated, which is
derived from its AST sequence. DeepCom converts the whole AST into the sequence and outputs
the numerical vectors. The comment reflects the complexity of the AST sequence (121 recursive
structure, which is very large for a 5-statements method), but such complexity of sentence also
leads to a low score. As for Code2Seq, it fails to describe the functionality in this case. As shown
in Figure 3, Code2Seq samples paths of AST to construct paths, but in this case, it fails to capture
the critical node “double,” which leads to the bias of the results. Therefore, the classifier selects
a better model in this comment category and avoids the disadvantages of too complicated or bi-
ased models. This case illustrates how results of comment classification could help the composite
approach in a micro-granularity.
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Fig. 2. Example of the source code, reference, and the generated comments in categories of “what,” “why,”

“how-to-use,” “how-it-is-done,” and “property.”

Summary

We demonstrate that comment classification could boost code summarization to reach
better results. Our composite approach outperforms other approaches, and obtains a relative
improvement of 8.57% (2.76 absolute improvements) in ROUGE-L and a relative improvement
of 16.34% (2.80 absolute improvement) in BLEU-4 score.
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Fig. 3. Example of the method, the generated comments and the corresponding AST structure.

5 DISCUSSION

5.1 Implication

5.1.1 Implications for Practice. It is hard to find a general way to solve the automatic code

summarization problem. The code summarization problem in practice involves many aspects.
In this article, we limit the problem to six categories of comments and evaluate how current models
perform. However, even in such a simplified situation, our experimental results show that there
are no models that can perform well in every category and dominate every other model. Therefore,
it is more feasible to build a model for a specific domain than for a general-purpose. Though the
contribution of a single simple case is limited, a combination of such situations can play a vital
role in assistance (e.g., API hint technique is simple but helps developers a lot [45]).

In this article, we exploit the impact of comment categories. To exploit the results in practice,
developers can leverage the code summarization with comment category prediction to better iden-
tify intentions in the developing or maintaining phase. In this way, dividing comments into par-
ticular categories can improve program comprehension and help maintain the source code better.
Moreover, with the awareness of comment categories, practitioners can apply the emerging code
summarization techniques to more appropriate scenarios (e.g., it is more reasonable to expect sum-
marizing “what” comments than “why” comments).
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In this article, our experiments show that current code summarization models are not suitable
for all kinds of code comments. At the same time, in practice, there is no need to write all kinds
of comments for every code. Hence, a prerequisite question of automatic code summarization is
determining which kind of comment is needed. We illustrate this argument by a typical phenom-
enon that we have observed. For example, we observe that some models can generate comments
that are similar to “TODO: implement this in the future” correctly, as they are generated according
to particular patterns of some unfinished source code. However, such a generation is hard to be
useful even it is correct by evaluation in terms of NMT metrics (e.g., BLEU), because in practice,
developers have their schedules to solve their own “TODO.” Therefore, we claim that it is too
rough to regard all kinds of code comments as the same natural language, so that such kind of
“TODO” could be treated as a noise, or be applied to an appropriate scenario (e.g., technical debt
prediction) instead of comment generation. It is beneficial to pay attention to a practical scenario
with specific kinds of code comments (e.g., “how-to-use” ) in the future.

5.1.2 Implications for Research. Considering context information and more kinds of

comments. In our experiments, all the models perform poorly in “why” and “property” com-
ments. It indicates that considering only code-comment information in method level is far from
enough, even though using method-level pairs of code-comment is feasible for learning-based or
retrieval-based approaches. It is beneficial to consider hierarchical project-folder-file-class-method
information in a classic software engineering project. In this article, we classify the method-level
comments, but it is also beneficial to take class-level or file-level comments into account.

Specifically, there is a difference between the “why” category and the “property” category. For
“why” comments, on the one hand, they could be considered to be higher-level comments, which
require more information to infer. Hence, the aforementioned class-level, file-level comments, and
other contexts could be considered to be the input of the model. On the other hand, the “why”
comments are often related to the business logic. For example, a comment explains a business
logic of why user profiles should be added. Such a business increases the difficulty of reasoning,
because unlike other comments (e.g., “how-it-is-done” ), the business logic is not generic even in a
big dataset of source code. Such kind of business logic is also hard to obtain solely from software
projects. Therefore, such kinds of comments require more customized and business-logic related
information. For “property” comments, the code summarization model could not fully meet the
practical situation. For example, a typical kind of comment related to property is explaining vari-
ables of the source code. To some extent, code summarization models could capture the patterns of
which variable should be commented by maximizing the probability of such tokens (i.e., the neural
network gives more weight to these variables during training). However, considering the different
contexts, the results are still not so ideal. For “property” comments that explain the properties of
the code, it would be beneficial to consider program analysis techniques (e.g., consider control flow
and data flow of the code).
Equip automatic code summarization with comment classification knowledge. Our com-
posite approach proves that with a simple and basic classifier, we can promote the performance
of code summarization. However, our experiments are just for proving, and we can utilize more
information from comment classification: On the one hand, it is more feasible to construct mod-
els on a specific kind of comments than general comments. On the other hand, it can improve
the understanding of the research question, especially for the complicated problem. For example,
as in this article, we find that the “what” comments get the best performance, further research is
encouraged, and we conduct a more in-depth study to improve the programming understanding.

Under the guidance of the comment classification, it would be beneficial to reconsider the pre-
processing of the dataset and the evaluation of the results. The current procedure of preprocessing
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focuses on natural language following typical NLP conventions (e.g., simple removal of stop words
and stemming). It is useful to consider program analysis. Similarly, the evaluation metrics also fol-
low those adopted in the NLP domain (i.e., “BLEU” and “ROUGE”). These neural machine transla-
tion metrics only emphasize literal and fluent results but do not consider the usefulness of the re-
sults from the perspective of software developers when evaluating the quality of a code summariza-
tion model (e.g., which kinds of comments are needed and are useful for improving the readability).

5.2 Threats to Validity

5.2.1 Internal Validity. Threats to internal validity relate to the bias in the replication of differ-
ent models. The implementations of different models are very different. These differences include
the environments, the model structures, and especially the preprocessing methods. For example,
though all the selected approaches support Java, the provided preprocessing methods are limited
to a specific Java version. Also, some only need tokens of the source code while some require
extracting AST of the source code. These differences increase the difficulty of reproducing exper-
iments. In this article, we use the source code provided by the original authors. To perform our
experiments (i.e., run several experiments on the same dataset), we keep in touch with the authors
by email or GitHub issues to address reproducibility issues (e.g., addressing the compatibility of a
language parsing tool like javaparser). Thus, with the assistance of the original authors, we believe
there is little threat to internal validity.

Other threats to validity relate to the researcher bias in manual classification of the dataset as
authors of this article participate in the tagging process (please refer to Section 3). To mitigate
such threats, we invite a third non-author programmer as a coder to participate in the open cod-
ing process. Before working together to discuss, the three coders go through the whole dataset
independently with the referenced criterion of the taxonomy [72]. Such threat mitigation actions
(i.e., non-author participation or independent tagging) have been adopted in prior works [64, 70,
72]. The experience of the coders in Java programming (two, three, and two years) is also a threat
to validity. We reference the studies of comments classification in the literature [49, 50, 72]. We
study the taxonomy of Zhai et al. [72] and investigate how to label comments from the dataset of
Pascarella et al. [49, 50]. We believe the help of the prior studies can help mitigate such a threat.
In the future, we would further minimize the threats by inviting more experienced programmers
to categorize comments.

5.2.2 External Validity. Threats to external validity relate to the generability of the dataset. The
proposed approach may show different results on different target systems. To reduce this limita-
tion, we use the dataset provided by Hu et al. [21], which is obtained from 9,714 java projects in
GitHub and is also widely used [3, 35, 66]. To judge the generability, we use cross-project valida-
tion to simulate the practical circumstance. In future work, it would be interesting also to consider
cross-language validation.

5.2.3 Construct Validity. Threats to construct validity relate to sample validity and taxonomy
validity. First, the threat to sample validity is that there is a potential risk that a biased sample
of projects could deliver the wrong knowledge. We choose a credible dataset that is widely used
and examined by researchers. The projects in the dataset are widely collected in different domains,
which are representative of projects with mature ecosystems and development environments. Sec-
ond, the threat to taxonomy validity is whether the taxonomy can provide an exhaustive and ef-
fective way to organize source code comments. We use open coding procedures involving three
experienced developers. The three coders derive the taxonomy individually and reach an agree-
ment with 0.79 Fleiss Kappa value. Furthermore, the experimental results confirmed differences
among different comments, which proves the effectiveness of the labels.
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6 RELATED WORK

Code summarization is a popular research topic. The early works for code summarization are
rule-based [17, 18, 57, 58]. Sridhara et al. propose Software Word Usage Model to create a rule-
based model that generates descriptions for Java methods [57]. Then they combine comments for
parameters into method summaries in the following work [58]. Haiduc et al. summarize software
documentations by retrieving a similar term-based summary, which contains the most relevant
terms for the entity found in the code [17, 18].

However, rule-based approaches cannot address cases that are not covered by the pre-defined
fixed set of manually constructed rules. There are information-retrieval-based approaches [11,
44, 53, 68] and researchers consider more context information [14, 39, 41–43]. Movshovitz-Attias
et al. [44] predict comments from Java code files using topic models and n-grams. McBurney et al.
use a Natural Language Generation system to summarize contextual information of source code to
enhance the comprehension [39, 41, 42]. The contexts are the essential methods in the program’s
call graph, which they compute using the PageRank algorithm. Moreno et al. use IR-based tech-
niques to extract information from classes of code and generate readable text using pre-defined
templates [43]. Fowkes et al. formulate code summarization task as an auto-folding problem, which
hides the less essential part of source codes to help developers focus on the critical part of source
codes [14]. Wong et al. propose an approach called CloCom [68], which discovers similar code
segments and used the comments from some code segments to describe the other similar code
segments. In this article, we use NNGen [32] as a basic IR-based model, which works in the same
way with CloCom.

Nowadays, artificial neural networks and deep learning achieve great success in many fields and
are applied to code summarization. Iyer et al. are the first to apply deep-learning to this area. They
adopt LSTM networks with attention to leverage the source code vectors and produce sentences
that describe C# code snippets and SQL queries [24]. Allamanis et al. use an attentional convolu-
tional network to summarize source code token vectors into short, descriptive function name-like
summaries [2]. Alon et al. propose general representations of source code, which represent source
codes using structural lexical information and apply them to downstream software engineering
tasks, including code summarization [3, 4]. Chen et al. propose an approach to split long code snip-
pets to short AST paths, which could improve the performance of code summarization [8]. Wan
et al. use an AST-based LSTM to embed the tree structure hierarchically and use reinforcement
learning to conduct the code summarization task [63]. Wang et al. also adopt reinforcement learn-
ing, and they present a new code summarization approach using a hierarchical attention network
by incorporating multiple code features, including type-augmented abstract syntax trees and pro-
gram control flow [66]. Liang et al. use a neural network called Code-RNN to represent structural
information of source code by summing and averaging the nodes of their parse tree [29]. Hu et al.
design a structure-based traversal method to traverse the AST and product a sequence to represent
the source code [20]. They then leverage transfer learning to incorporate API knowledge libraries
as additional natural knowledge is often required for describing functionality [20, 22]. Piech et al.
represent a snippet of source code by simultaneously embedding a triple of (precondition, code,
postcondition) into a feature space where code is a linear map on this space. The precondition and
the postcondition are the variable values before and after the execution of such code [52]. LeClair
et al. [28] propose a neural model that combines words from code with code structure from an AST
in a separate way and summarize coherent summaries. Current approaches follow the sequence to
sequence framework, which encodes the code into fix-length vectors and then decodes it into nat-
ural language space. These pursue a general approach to represent source code and conduct code
summarization without considering comment classification. Different from them, in this article,
we do not regard comments as general natural language. Instead, we treat comments differently
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by considering their functionality or intention. To the best of our knowledge, we are the first to
investigate the relationship between the type of comment and code summarization. Furthermore,
by considering the comments’ differences, our composite approach can take advantage of different
kinds of approaches (i.e., deep-learning-based and retrieval-based approaches).

There are several works related to comment classification. Mcburney et al. use topic modeling to
select keywords and topics as summaries for source code and classify comments automatically [40].
Steidl et al. classify categorization and conduct comment classification to provide better quantita-
tive insights about the comment quality assessment [59]. Pascarella et al. construct a taxonomy of
comments and investigate how often each category occurs by manually classifying more than 2,000
code comments [49, 50]. Zhai et al. classify source code comments from the perspective of program
analysis. Then they construct program analysis-based rules to infer new comments and associate
comments with code for defect detection [72]. We adopt their taxonomy of comment and the clas-
sification criteria. Different from these studies, our study focuses on method-level comments, and
we go one step further to explore what kinds of code comments a code summarization performs
the best for. To the best of our knowledge, no prior studies explore the impact of comment classifi-
cation on code summarization. We are the first to investigate such an impact considering different
types of code comments and the characteristics of the code summarization models (e.g., DeepCom
regards the AST sequence as input, which is related to the functionality of the source code).

There are several works related to the classification tasks based on the source code. Ugurel et al.
use SVM for automatic classification of archived source code into eleven application topics and
ten programming languages [60]. Louis et al. train a classifier to predict where to write a code
comment (i.e, whether a developer should write a code comment for a given piece of code) [35].
Wang et al. use the n-gram representations of the source code to train a classifier and predict bug
types [65]. Giger et al. use the dependency graph and object-oriented metrics of the source code to
predict different categories of code changes [16]. Chen et al. use a Tree2Seq framework to perform
code summarization task and code classification is involved as an auxiliary task for aiding the
Tree2Seq model [7]. Van Dam et al. propose to use statistical language models from the natural
language processing field such as n-grams, skip-grams, Naive Bayes, and normalized compression
distance to perform source code classification [61]. In this article, we not only train classifiers to
predict the category based on the labeled relationship of code-comment pairs and categories but
also apply the classifiers to our composite approach to boost the code summarization.

7 CONCLUSION

In this article, we manually label 20,000 code-comment pairs into six categories: “what,” “why,”
“how-to-use,” “how-it-is-done,” “property,” and “others.” Based on this dataset, we conduct an exper-
iment to investigate the performance of different state-of-the-art code summarization approaches
on the categories. We find that the performance of different code summarization approaches varies
substantially across the categories. Moreover, the category for which a code summarization model
performs the best is different for the different models. The preferences of each model to a partic-
ular comment category are different. Motivated by this finding, we design a composite two-step
approach that analyzes a method and outputs a comment that summarizes it: (1) our approach
predicts the category of code comment that likely accompanies a particular piece of code, (2) our
approach then picks the code summarization approach that performs the best for the inferred
category, and use it to generate the corresponding comment. Our approach outperforms other ap-
proaches without considering comment classification, and obtains a relative improvement of 8.57%
in terms of ROUGE-L and a relative improvement of 16.34% in terms of the BLEU-4 score. Our re-
search highlights that by incorporating the automatically inferred category of code comment, we
can boost the code summarization task.
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